A categorical reconstruction of crystals and quantum groups at q = 0

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERIC EXTENSIONS AND MULTIPLICATIVE BASES OF QUANTUM GROUPS AT q = 0

We show that the operation of taking generic extensions provides the set of isomorphism classes of representations of a quiver of Dynkin type with a monoid structure. Its monoid ring is isomorphic to the specialization at q = 0 of Ringel’s Hall algebra. This provides the latter algebra with a multiplicatively closed basis. Using a crystal-type basis for a two-parameter quantum group, this multi...

متن کامل

Noncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at Q = 0

We present representation theoretical interpretations of quasi-symmetric functions and noncommutative symmetric functions in terms of quantum linear groups and Hecke algebras at q = 0. We obtain in this way a noncommutative realization of quasi-symmetric functions analogous to the plactic symmetric functions of Lascoux and Sch utzenberger.The generic case leads to a notion of quantum Schur func...

متن کامل

A characterization of simple $K_4$-groups of type $L_2(q)$ and their automorphism groups

In this paper, it is proved that all simple $K_4$-groups of type $L_2(q)$ can be characterized by their maximum element orders together with their orders. Furthermore, the automorphism groups of simple $K_4$-groups of type $L_2(q)$ are also considered.

متن کامل

Quantum Groups, q-Dynamics and Rajaji

We sketch briefly the essentials of the quantum groups and their application to the dynamics of a q-deformed simple harmonic oscillator moving on a quantum line, defined in the q-deformed cotangent (momentum phase) space. In this endeavour, the quantum group GL qp (2)-and the conventional rotational invariances are respected together. During the course of this discussion, we touch upon Rajaji's...

متن کامل

Quantum Groups, q-Dynamics and Rajaji

We sketch briefly the essentials of the quantum groups and their application to the dynamics of a q-deformed simple harmonic oscillator moving on a quantum line, defined in the q-deformed cotangent (momentum phase) space. In this endeavour, the quantum group GL qp (2)-and the conventional rotational invariances are respected together. During the course of this discussion, we touch upon Rajaji's...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mathematics

سال: 2019

ISSN: 0033-5606,1464-3847

DOI: 10.1093/qmath/haz001